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The diamagnetic Coulomb problem at high field strength.
Asymptotic analysis

S Barcza
Konkoly Observatory H-1525 Budapest Xl Pf 67, Hungary

Received 2 May 1996

Abstract. The paper deals with asymptotic expansions in cylindrical coordinates for the
Schibdinger equation of the diamagnetic Coulomb problem with infinite nuclear mass. The
basis functions introduced by Liu and Starace are analysed: analytical asymptotic expansions
are given for the basis functions and eigenvalues belonging to them. Using these, analytical
asymptotic expansions are obtained for the coupling coefficients and solutions of the system of
second-order ordinary differential equations which arise if the wavefunction is expanded in terms
of the Liu—Starace basis functions. The role of the asymptotic expansions is elucidated for the
numerical solution of the non-adiabatic approximation and for finding non-trivial auto-ionizing
states.

1. Introduction

The Schédinger equation of a hydrogen-like ion of nuclear chargand infinite nuclear
mass in the homogeneous magnetic fieldparallel to the axig is the simplest problem of
its kind in the enormous manifold of non-separable quantum-mechanical problems. At an
arbitrary value ofH the Hamiltonian cannot be split into small and large terms, consequently
a conventional perturbative approach is not possible, thus the problem is often treated by
variational calculations, as are other non-separable problems of small dimensions, or by
diagonalization technique. These approaches are beyond the scope of the present paper,
we turn to another method using special eigenfunction expansions which have been applied
recently with success in several cases, for references of their simplest forms seeeRuder
al (1994).

The problem takes the form in the cylindrical coordinatés- cylindrical radiug and
z as follows.

2 19 3% nd 27 » 2 .
e+ gp a2 v =0
0<o< @ —00<z <00 (1)

where nz is the magnetic quantum numbeyr,is the azimuthal angle aroung the first
factor of

W(z,0,¢) = (27) Y2 explingg) ¥ (z, 0) )

was separated from (1), howevelr(z, o) cannot be factorized in terms of functions of
ando. w = e|H|/(2mc) andE* = E — wng, E is measured in atomic units & 1, m = 1,
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h=1),0=1if |H =47 x 10°T. Equation (1) was derived by elementary operations,
further analytical details are given by Liu and Starace (1987).
By transformation

V¥ (z, 0) = " exp—we®/2)X (z, 0) €)
and introducingt = we? we obtain our standard form of (1):

32X 10X [E 1 lxa L 32X 2Z x|l -o
§5g2 Tat _E]ag+[2w_z(”3+ >] * 10 [8Zz+@/a,+zz)uz ]— '
(4)

(Beginning from (3)ns denotes|ns|, we omit the symbol of the absolute value.) The
assumption

X =) fi@eG 0 (5)

(Liu and Starace 1987) and its analytical and numerical consequences will be the subject
of this paper and paper Il (Balla and Bénk996). From (4) it is evident that L o < oo
is the field-strength domain where (5) will have favourable convergence.

The LaS basis functions are defined by

92D, 27 _
902 |:(Q2 + z2)1/2 - (”g - %,)Q ? - wZQZ + Mn(Z):I ¢, =0 (6)
where
D,(z, 0) = 0" 2" /2g, (2, 0) @)

(6) is suitable for numerical analysis while the equivalent form

3%g, [2n3+1 g, 27
) o~
d0? +[ wg} do * [(92+z2)1/2

is convenient for an analytic asymptotic treatmet, (oo, 0)o~*/? is obviously identical
with the nth element of the Landau basis (Rudstral 1994), therefore, the LaS basis
can be regarded as a generalized Landau basis. By using the basis fuggtibespole
o =z = 0 of (1) is eliminated because the composite wavefunction is chosen appropriately
in the neighbourhood of the singularity.

If o > 0 equation (8) has discrete eigenvalyes(z) only, its eigenfunctions are
normalized as

—2(n3+ D + (z)} gn=0 (8)

(o]
(D, D) = /O an3e_wgzgn (z,0)8v(z,0)0 dQ = 8w (9)
for any z in order to have
o, 2% —o, (10)
9z

The regular behaviour af and its quadratic integrability at the irregular singulagty= co
of (1) is secured automatically by usim,(z, o) in the whole interval-co < z < co. The
norm is

ww =Y [ feneod. (12)
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The coupled system of ordinary differential equations to be solved is obtained by
introducing (5) in (4), using (8), a multiplication by?'s exp(—we?)g, from left and an
integration over:

d2f”+[2E* @ + Al fu+ D | Auw fur + B dinl_ g 0,1 (12)
— Mn nnlJn nn' Jn' nn' —3 | & n=4uu.d,...
dz2 Hnlz — dz
where
o 82@;1’ 82(1)11’
A, (2) = b,——do=|D,, —— 13
@=[" e ( azz) (13)
and

oD,
0z

are the elements of the coupling matricds, indicates that the element = n must be
omitted.

To our knowledge the form (12) was proposed by Liu and Starace (1987), and solved
in adiabatic approximation, i.e. in (5) the sum was confined to one term. This restriction
will be dropped and the differences originating from the non-adiabaticity will be indicated.
Equation (8) is interesting in itself since it defines a system of orthogonal functions at a
fixed value ofz, because of the termZ(o? + z?)%? its analytic treatment is possible in
the regions 0< |z| <« 1 and|z| > 1 only. In these domains of analytical asymptotic
expansions will be given to the basis functigns the matrix elementd,,,,,, B, (section 2)
and the solutiorX as well by which a numerical integration of (12) will be easier and more
transparent if the sum of (5) is extended to more than one element and important analytical
results will be obtained for non-trivial auto-ionizing resonances (section 3). Concerning the
equations which follow from the application of the LaS basis paper Il is devoted to their
numerical solution in the non-asymptotic range. The substantiation of (5) and its comparison
with the numerous other possible forms ¥fare beyond the scope of the present paper,
we mention here only that eigenvalues and eigenfunctions with a fixed accuracy will be
obtained from (5) by the minimal number of necessary terms.

do (14)

00
Bnn/(z) = 2/ q>n
0

2. Asymptotic analysis of the basis equation and asymptotic expansions for the
coupling matrix elements

By using the machinery of this section the time-consuming computatioA,pf B, ,

will be reduced in the asymptotic domains to the evaluation of algebraic expressions or
normalization factors or to the computation of some simple integrals. In addition to the
computational simplifications the asymptotic formulae of the present section allows the
construction of the analytical form of the complete ensemble of the solutions to (12) in its
singular points; = 0 andz = oo.

21. Therangd < z <« 1
By introducing the variable

x = (224 pHY? lz| <x < o0 (15)
(8) takes the form

[Ho+ 2?H' + pa(2)]gn(z,x) = 0 (16)
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where
92 2n3+1 0 2z
Ho= — + 3t —20x | —+ — —20whz+1) (17)
9x2 X ox by
1792 1 9
H/ —_ | = _ - 2 . . 18
x?2 [8)62 <x i a)x) Bx] 49

Equation (16) will be solved by a perturbation theory to obtain the coefficients of the series

n(2) = p¥ + piP? + - (19)
and

gn(z,x) = X000 + 4P+ Pzt + - (20)
where

@ =) anxd@  i=12 (21)
and

[Ho+ 1 @%@ (x) = m=0,1,... (22)

defines the basis to expang. The perturbation theory is peculiar in the sense that the
basis functions depend animplicitly and for g, the basis functions are exactly orthogonal
atz = 0 only:

00 If n = I’l/
(2 = 223" =, O () ¥ O (x)x dx =

2
Ix| O(z%+2) if n£n' (23)

By the steps of a conventional perturbation theory we find from the coefficient of
that

Mizl) = _Hnn + O(Z2n3+2) (24)
and
H/
@ 2n3+2
ann’ - ﬁ + O(Z 8 ) (25)
Wy — Ihn

if n’ # n while o is arbitrary, formulae for efficient computation &f

nn

appendix A. By elaborating the coefficient gf we obtain that

2 (@) 1) D 2n3+2
Ay = M«» O [Z Ay Hyyy + 1Pa } +0(|z]**?) (26)
m

' (z) are given in

nn’

if n#n’ anda'? is arbitrary. The normalization (9) ¢f, is satisfied if

nn

alh = (27)
a?=-1%"all". (28)

n
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2.1.1. The solution of (22)If w — oo (22) takes the form
Z @ nzg+1

. P .. d
. 1-6)— =
[S a2 + (n3+ E)dif + 2wi2 | dw >

whereé = wx? was introduced. The normalized regular solutions of (29) are

} 0@ =0 (29

© 20" 0! 2n3+2 R ~1/2
Xn (x) = |:(n~|—ng,)'3 + Oz )i| Lnin:g(g) + O(w / ) (30)
if
' = 2w(2n 4 n3 + 1) + O(w=?) n=0,1,... (31)

note that the factora's** will harmonize (30) with (9).

If 0 < w < oo then (22) has no solutions in polynomial form except for a number of
discreten? andw values (Taut 1995). For an arbitrasy (22) was solved numerically by
the following procedure (Barcza 1979). We assume

X’(ZO) (x) = Z cl(:)xm-‘r)/ (32)

after introducing it in (22) we obtain a recurrence relation djt:
(v +m+2(y +m—+2+2n3)c, +2Zc") ) —[2(y +m +ng+ Do — 101 =0
m=-2-1,...,c"=c"=0 (33)
(n)

from which it follows thaty = 0, ¢y is arbitrary and linearly present in aa{’, therefore,

¢y is just the normalization factor. By appropriate choicec§f the upper row of (23)

must be satisfied, its dependence will be of the form constapD(z%'**2). Since

(n)
.c 2w
lim ’”(+)2 == (34)
m—00 CW’Z m

the expansion (32) is convergent for any finitand this is fully sufficient for our purpose.
(The asymptotic behavioyr® oc exp2wx?) of (32) would make it unacceptable only if it
were extended fox = c0.)

By using expansion (32) the equation

X0 (s, 19 (x)) = 0 (35)

was solved numerically for a particular; and 11x,, x, was increased stepwise until
satisfying the condition

11— @ @.1x)/n® (x| < 1077 (36)

n

Figures 1 and 2 are the plots of the computed values of the funeffd@w) and of the value
of x; which was necessary to satisfy (36). Using double-precision arithmetic the levels up
to some 15 nodes could be explored by solving (35). To check the qualig®obf the
form (32) for the levels: = 0-5 (23) was computed, if # n’ andz = 0 the absolute
value of the integral was approximately T0or less in the interval O < » < 1000. An
alternative method of solving (22) is given in appendix B.

Figure 1 shows a composite spectrum:«at-> 0 for the low-lying levels there is a
Balmer-like behaviour without merging because at any value afith increasing node
numbers the spacing of the eigenvalues convergesoto.é. to the Landau spacing. At
o — oo the Balmer-like behaviour disappears and the Landau spacing dominates.

Three remarks are appropriate.
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Figure 1. A plot of uﬁ,o)(w) forZ=1,n=0,1,2,3,4. Solid curvesinz = 0; broken curves:
n3 = 1.
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Figure 2. A plot of x;(w) for n = 0,1, 2. Solid curves:nz = 0; dotted curvesnz = 1. The
oscillation of the curves is a consequence of the stepwise increasinginf(36) which was
not smoothed out.

(@) The solutions(? oc x=2"2, which are valid solutions fof > 0 because of > 0,
must be excluded from continuity considerations in the poiat 0.
(b) If w = 0 (22) admits solutions of the form(x) exp. .. x) wherep is a polynomial
which could be used to expang in the domain 0< w <« 1. (These are irrelevant for us
and will not be discussed because (5) is an unsuitable assumption here.) The eigenvalues
belonging to them are

© —47?
Ky = o5 12
(2n + 2n3 + 1)?
the difference of the numerical values from (36) and (37) was abow-102 forn =0, 5

atw = 0.01.
(c) The solutions of Taut (1995) are obtained from (33) by setting

(37)

uﬁlo) =2w(m +n3+1) (38)
and

c,(:il =0. (39)
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These conditions terminate (32) bf(:‘iz = 0, they are equivalent to an algebraic equation
for the ‘free’ parametew of (33), its real roots degenerate (32) into a polynomial of degree
m.

2.1.2.
The final form of the LaS basis functions is
H),
®,(z.0) = ¢"+Y Ze”"’z/z{xi‘” (0 + [Z/ oo T Zaﬁiﬁxrﬁ”} ' } (40)
m Mm — [n

wherea 2 is the coefficient ot =2 in (26) which is zero if23 > 1. On introducing it in (13)
and (14)—remembering thaydz requires the inclusioniz /x)d/0x etc—by comparing the
two expansions we find for # n’

By = BY + BYzIn|z) + BYz + 02 Inz]) (41)
and
&) © &) W | gt
A = A, In|z| + A4, +0zIn|z]) = 2[B In|z| + B, + B, + O(zIn|z]]. (42)

The diagonal elements of the coupling matrix are obtalned by derivation of (10) with respect
toz:ifn3=0

ID, 0D, HCD 72
A,m=—< ,>— A+ = [ o (0)] +0(zIn|z)) (43)

dz 0z

while A,,, = A z2+ ... if n3 > 1. The value ofA? is plotted in figure 3, the summation

was extended from 10 to 15 elements in order to have relative accuracy 0.01. Formulae
are given in appendix C for efficient computation of the coefficients of (41) and (42), and
some characteristic values 8-, and B") are plotted.

hn'

A(O)

oA TR AL ET NS
P

-5

I[IIII‘III('

il b v bl
-1 0 1 2 3

log w

Figure 3. A plot of Aﬁf,)f(w) for n = 0: full curve;n = 1. dotted curven = 2: broken curve
(Z =1).

A numerical comparison of the asymptotic expansions (19) and (41)—(43) with the results
of a numerical integration of (6) will be presented in paper Il.

2.2. The asymptotics far> 1

After expansions (8) takes the form

92g, 9 z 3 32
Sggz T 19 §+{2 |z|[ 2022+ gwzes TOC )]

pa(2) n3+1}gn _0

1w 5 (44)



6772 S Barcza

where
(@) =) (45)
m=0 |Z|
and
b
gn(z,£) = ZZ o Lons 6): (46)
k=0 m=| O

Equation (44) was solved by using (8) with= oo (Laguerre differential equation), the
relation
n+1

n 2
%_LnJrns = _m—l‘nin3+l + (Zn +n3+ 1)L"+'l3 (I’l + n3) Lﬂ+"3 1 (47)

among the associated Laguerre polynomials, and equating the coefficient of the different
Laguerre polynomials with zero at every powerzof:. The result is

8n (Z g) = b(O)LnJrﬂa(E) + Z |Z|T+l Z |:b'(1+"-1_ : + e i| n+m+n3($) (48)
k=1

m=max(—k,—n) l |

here the coefficients®) of (46) outside the domain indicated by the sum in (48) are zero,
while the coefficients® are arbitrary, and
VA 2n+n3+1
(@) =202+ ng+ 1) = [2— e
18n(n+n3+1)+3n3+9n3+6
L6t o

wZ

(49)
Those coefficients'3,t? of (48) which are necessary to calculate the first two non-vanishing
terms of the asymptotic expansion of the coupling matrix elemapts B,,, can be given
explicitly:

p+D _ Zb® li—[l( N l—[ n+m (50)
n+k 2w k+lkk| 2 o n4m-+ n3
Zb(o) k—1 k—
(2k+1) _ n
b, lj— = mn(’n‘i‘z)l—[(”—m-ﬁ-na) (51)

m=

note thatn is fixed in (50), (51)k =1,2,....
The normalization condition (9) must be satisfied by the appropriate choice of the
arbitrary coefficients:

205+ M2
o _
b = [(n + ng)!3] 52)
b =b? =p® =0 (53)
and
Z2[2n% + (n3+ 1)(2n 4 1)]
b(", ... can similarly be obtained.
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If n # n’ the first non-vanishing terms of the asymptotic expansions of the coupling
matrix elements are given by

3D, —1Di(nln'H1/2 z —2|An|—-i-11 +n 13 i ;
(CI>,1, n > _ (=D'( )4lz| |:( 3) @2|An| +j)br(z/2|—AArll+l)
=1

az! [(n + n3)! (0’ + n3)!]%2 n! j
41 |A§nlflb(2’"+” ﬁ(zm o jyp@aniznsy (R EM AR }
PR n m n —_— n,7 n m .« ..
ol = S CEO

(55)
whereAn = n’ —n, the upper sign is valid ihkn > 0,i = 1, 2, finally —An or —(AnFm)
must be used in (50) and (51) insteadkoffor a fixedn orn’. If n =n’

2
16078
The values of the asymptotic expressions (55) and (56) will be compared with the computed
coupling matrices in paper Il. For the asymptotic analysis of (12) it is important to summarize

from this section that all matrix elements,,, B, vanish rapidly atz| — oco. The only
non-vanishing element is the first term of (49).

Ay = [2n(n +n3+ 1) + na + 1]+ O(|z| ). (56)

3. Asymptotic analysis of the coupled equations

3.1. The domairz| « 1

By assumption (5) the point = 0 in (12) was converted to a regular pointri§ > 1,
while it is logarithmically singular in the non-adiabatic approximationgf= 0. ¥ will be
regular in the interval & z « 1 and satisfy (12) if

0]

fa@) =) _dP" ™ 4+ D,(2) (57)
m=0
is assumed for alk together withy, > 0, where
D,(z) = D®z?2In|z| — 3)/4+ DPz3(61In|z| — 5)/36+ - - - (58)

will compensate the logarithmic singularity if; = 0: D® = 0 for the odd solutions,

DY = 0 for the even solutions, and of cour® = DY = 0 if n3 > 1 or (5) is confined

to a single term. Using (57) the complete ensemble of the bounded asymptotic solutions of
(12) was constructed in the form of expansions which degenerate into Taylor series in the
adiabatic approximation or iz > 1.

After introducing (19), (41)—(43), and (57) in (12) we obtain from the coefficient of
"2 thaty, = y = 0 ory, = y = 1 (corresponding to the even and odd solutions in
z), the coeﬁicientsié”) are arbitrary and at least one of them must be different from zero.
From the coefficient o” we obtain

dj = [(uff) — 2B — ANy =3 AN A+ 2y>d5"’>}/[<y + D +2). (59)

If n3=0andy =0 (59) givesdé”), Af,?} must be taken from (43). Checking for parity
shows tha\” = 0. The coefficient of Inz| is zero if

DO =" AN (60)

nn’
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If n3 =0 andy = 1 the elaboration of the power$, zIn |z|, z results in

n ! 5 (0) 4’
d’ = =33 Bdg” (61)
DY = =AW + Bi)dg” (62)
" = é[(ﬂio) —2E* — AD)d” - 3 "(AD + BIhdS" + ZB;?}d{”’)}. (63)

Since sign(z) is a factor ofB%d” 22 will, while B'%4{" will not change its sign at = O;
consequently this term does not destroy the parity,ofvith respect tazy — —z.

The asymptotic solution (57) is useful to bridge over the critical regicd | < 1
where a numerical integration of (12) is problematic because of the logarithmic singularity
of A,,. Furthermore this analysis pointed out that at an outward (i.e. from 0 to
z = o0o0) humerical integration of (12) the appropriate vanishing of the vector—vector function
F(FE) must be found wherd'(z) = (fo(z), f1(z), ...) and each elements, (z) depend on
E = (E*,d$"/d\°, ...) if 4 is the non-zero element.

3.2. The domairz| — oo

At z = +oo equations (12) have an irregular singularity: a series expansion of the type
(57) e.g. in terms of the variable= |z|~ does not exist. It is, however, possible through
analytical reasoning to determine the ‘tail’ of the wavefunction (Bethe and Salpeter 1957)
by finding the form of f,(z) for all indicesn, to derive the thresholds if*(w) which
divide the bound and continuum states, and to show those solutions which correspond to
auto-ionizing states.

If (49), (55) and (56) are introduced in (12) and the vanishing terms|at> oo are
neglected in adiabatic approximation the asymptotically good solutions are of the form

fi = va(2) exp{—[20(2n + n3 + 1) — 2E*]Y2|z]}. (64)
The ionization thresholds are different for every channel

E; = [un(00) — A (00)]/2 = @(2n 4 ng + 1). (65)
In non-adiabatic approximatioA,, , B,, mix solutions of type (64), therefore

[ =) vun(2) @Xp{—[20(2m + 3 + 1) — 2E°1%%|z]} (66)

must be assumed. Using the variabli¢ can be pointed out that,(z) # 0 andv,,,(z) # 0

at |z] — oo, i.e. their behaviour does not change the unbounded character of (11) if the
exponents of (64) and (66) are imaginary, the further propertiasak irrelevant for the
asymptotic considerations. Consequently it is evident that in (12) the only threshold is at

Ef = w(ng + 1) (67)

which is equivalent to two thresholds Bt= w and E = (2n3 + l)w if n3 # 0. The trivial
auto-ionizing states are obtainedrif > 0 and E(w) = E*(w) + wnz > w occurs when
increasingw. If

(2no+n3+ 1w < E* < (2ng+ns+3) ng=20,1,... (68)

f»(z) has oscillating componenig + 1 and the norm (11) will be unbounded. Furthermore,
experience from numerical integration of (1) in spherical coordinates (Barcza 1994) has
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shown that with increasing then = 0 term dominates the norm (11). Therefore, all levels
are of continuum type with oscillating wavefunctionaf > Ej.

Nevertheless, from qualitative physical considerations it is expected, and in adiabatic
approximation it was found (Venturt al 1992, Rudeset al 1994), that by the motion a
Balmer-like merging is caused to any Landau level. These results apply strictly=oso.

For the domain K o < oo our asymptotic analysis revealed that these levels can be found
in non-adiabatic approximation by eliminating the oscillating tefstz)go(z, 0) from X if
no =0, fo(z)go(z, 0) and f1(z)g1(z, o) if no =1 etc.

A simple omission of the element= 0 from (5) is a first approximation to find these
levels but it raises the question of the relation of this solution of (12) to that of (1). A
mathematically appropriate way of eliminatirfggo is to impose the condition

dfn’
dz

by which f; is completely decoupled from (12) and satisfies the homogeneous eigenvalue
equation

00
Z AOn’fn/ + BOn’ =0 (69)
n'=1

@ fo .

a2 + [2E* — po(z) + Aogl fo = 0. (70)
Its solution is of the form

fo = Covo(z) exp{—[2w(n3 + 1) — 2E*]Y/?|z|} (71)

Co is arbitrary. 1f Co # 0 in the bound domairE* < E§ the eigenvalues are already
determined by (70) which is essentially an adiabatic approximation with discrete spectrum.
However, these are not eigenvalues of the rest of the coupled equations ((12) with

and (69)), therefore the choia@g&, = 0 is necessary to convert (70) to identity at afy.

In the continuum domaitE™* > Ej (70) has a continuous spectrum, the chaie# O is
possible by which a continuum-wavefunction is obtained if (12) witkz 1 and (69) are
integrated numerically. From asymptotic analysis a criterion has not been found whether
solutions of this type exist with discrete or continuous multitudeCef These solutions,

if they exist for the whole axig, constitute a subspace of the continuum of (1) which is
rather a mathematical peculiarity and its eventual physical significance cannot be clarified
merely from asymptotic analysis.

If Co — 0 equations (12) witm > 1 and (69) degenerate into an eigenvalue problem
for the non-trivial auto-ionizing resonance levelsmgf= 0 with bounded norm (11) at the
eigenvalues, the threshold is now Bf = w(n3 + 3). This system of coupled differential
equations can be solved by appropriate numerical methods; when looking for the best form
of (69) to introduce it in (12) the asymptotic analysis of section 2 must be extensively
used to avoid, e.g. an incorporation of unnecessary singularities which can be formed by a
careless combination of singular or rapidly vanishing elements.

After having expressed(z) from (69) and introduced it in (12) we can find the non-
trivial auto-ionizing resonance levels a§ = 1 if the auxiliary condition

i} e

B
(72)

On’
An
is imposed on (12) witlk > 1 and (69). In principle the imposition of auxiliary conditions
can be continued to find the non-trivial auto-ionizing levels belonging to any higher Landau
level. If eigenvalues satisfying* > E§ are found from the numerical integration of (12)

o0

* AO"' *
Z H:Aln’ — (2E* — p1 + A11)AOli| S + |:BL1' — (2E* — p1+ A1)
n'=2
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and auxiliary condition(s) as expected wher> 1 these are the non-trivial auto-ionizing
states.

Because of (68) the thresholds follow each other by the Landau spacing. The position
of the thresholds, the domains of the non-trivial auto-ionizing levels are an intrinsic feature
of (1): if the expansions in terms of the Landau basis (Reded 1994) or oblate angular
spheroidal functions (Barcza 1994) are analysed the same results are obtained as in the
present subsection. This feature is not apparent only if unsuitable basis functions are used
to expandhy.

4. Conclusions

The asymptotic analysis reported in this paper provides the basic first steps, a foundation for
specifying efficient numerical integration methods for the solution of the system of coupled
second-order ordinary differential equations (12) which arises from the choice of the LaS
basis. The preliminary numerical tests indicate that the efficiency of the numerical methods
is drastically improved by the incorporation of the established asymptotics especially at
z > 1 where the time-consuming computation @f(z) and coupling matrices can be
avoided.

By the construction of asymptotic expansions f{(z) at 0< z « 1 much computing
time can be saved in a numerical integration of (12kit= 0 since the error of an integrator
formula does not vanish when increasing its order. The valug$(@f~ 0) became known
by solving linear algebraic equations which makes a number of trial shootings unnecessary,
and the asymptotically free parametd@@ of the wavefunction were found. The asymptotic
analysis of (12) at — oo revealed the asymptotic form of the wavefunction, the thresholds
and gave hints on how to find the non-trivial auto-ionizing states by the numerical integration
of (12).

As a result of the asymptotic analysis thexo < z < oo interval of a numerical
integration could be confined to a finite interval {Q but a more important result is that
we have found analytical criteria which lead to non-trivial auto-ionizing resonance levels.

Appendix A. The matrix elements for the perturbation series (20) and (21)

o0
2 2
H, (z) = (x? = H)mg o2 )X,S,O)H’X,(lo)x dx

4

o 2_.2y (0 1
()C2 _ Z2)113e7w(x -z )X,i’)f

2(n3+1) ax©
X ox

Iz]

27
+ |: — 2wz +1) + M,ﬂo)] x,ﬁo)} dx
X

=H PP = HP Iniz| + H? +0(z)). (A1)

If n3 = 0
HOY = 2784 (A.2)
H = 472040 (A.3)

H'O _ Zch")cg”')[wl/zF(%) — Z(C — Inw)]

nn'

+ / e "8 (3) + ¢ 81 (2) + 5,25, (] dx A4
0
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whereC is the Euler number,

Sy(m') = 2(nz + 1) Z mcr(r’f')xm_m,

o0 o0
+2Z Y O g [y — 203+ D] Y WX (AB)
m=m’'—1 m=m'—2
S,(m") = Z cff)xm_'",. (A.6)
To obtain the value of (A.2) and (A.3) the relation
cé") = Iim0 ®, (0, 0) /0 Y? (A.7)
o—
is useful if ®, is determined by a numerical integration of (6).
If ns > 1
HSY=H® =0 (A.8)
oo
Hy) = / x252g7 5, (0) 8,0 (1) dhx. (A.9)
0

It is a remarkable feature of the asymptotic expansions (19)—(20) that i O by
(A.1) the vanishing of the first- and second-order terms in the perturbation series (19) and
(20) are proportional tdz| andz? respectively while the vanishing: z2, z* is unchanged
if n3 > 1. This difference follows from the nature of the singularity of /2 — n3/0? at
o = 0: the first term dominates if3 = O while the second one is dominatingnif > 1.

Appendix B. An alternative expansion to (22)

The numerical results of section 2.1.1 fof® will be confirmed here by an expansion which
is interesting from an analytical point of view although it is computationally less efficient.
We substitute

@, (0, 0) = 0" 26”230 (o) (B.1)
for (7) in (6). The analogue of (22) reads in this case
d? 2n3+ 1 d 27 -
{dx2 + [ 3x + Za)x:| Fea [ + 2w (nz + 1) + M“”“ 19 =0 (B.2)
its solution is assumed in the form
7O = Z s mty (B.3)

The recurrence relation f(ﬁ”) is

(y +m+2)(y +m+ 2+ 210", + 27" + [2(y +m + n3 + Do + pO]e? =

m=-2,-1,... & ="=0 (B.4)
from which it follows thaty = 0, and
~(n) 1/2 ~(n)
c 2 . C 2
lim '("TZ = +i ( ‘“) lim ";*f - (B.5)
mea)&” m mﬁu)c” m

m+1
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Figure B1. A plot of some¢(x,n,n3) = x"3 eX[waz/Z))Z,(,O) for Z =1, o = 10. Full
curves: n = 0, Y = 7.185762 forng = 0, ul = 3425883 forns = 1. The dotted
and broken curves in the left panel show the start of the divergent behaviatxo0, 0) if
ugo) = 7.183(< 7.1857623 and uéo) = 7.188(> 7.185763 were used in (B.3). Dotted curves
in the middle and right panelu(lo) = 5128293 forng = 0, /,Lg_o) = 75.02968 fornz = 1.
Broken curvesyY = 9268091 forng = 0, i = 1154932 fornz = 1. These values qi”
satisfy (B.7). The noisy end a@f(x, 2, 0), ¢ (x, 2, 1) indicates the value where computational

accuracy 10'° becomes insufficient for computingéo) (x) accurately enough. The noise at

x ~ 1.5 is replaced by a vanishing behaviour corresponding to (B.7) if the computational
accuracy is increased to some 18, however, it reappears at larger valuesrof

30 o g2’ (B.6)

if m > 1. The asymptotic behaviour (B.6) implies a quadratically integrable vanishing of
(B.1) which corresponds to a bound state, the only prescription is for (B.3) that the series
must not be terminated. A few functioggx, n, n3) = @, (0, x)x Y2 = x™ exp(wx?/2) 5@

are plotted in figure B1. The eigenvalue was obtained from the condition

lim ¢(x,n, ns; uilo)) =0 (B.7)
X—>00

which is satisfied at discrete values pf® only. Full agreement was found with the
numerical results originating from (35) and (36): our sophisticated method did not reveal
new levels. The decreased efficiency of this procedure manifests itself in the loss of digits
when computing (B.3) with increasing where its convergence is similar to that of the
Taylor expansion of exp-2wx?) atx > 1.

Solutions of type (B.1) were rejected in the early days of quantum mechanics (see e.g.
Pauling and Wilson 1935 or any later textbook on the topic), from this remark it is obvious
that this is not justified since the exponential divergence in (B.1) is compensated by the
behaviour (B.6) ofy.

Appendix C. The coefficients to the expansion of the matrix elementd,,,,, By, at
z~0

The coefficients for (41) and (42) were computed by expanding the relation
1 0D, 1 o0 27
*Bnn’ == (q)na > = Cpnq)n’iz dx (Cl)
2 0z M (2) — 1n(2) Iz] x3

(Barcza 1994). Ifz3 = 0 the results are

BY  azelc)

- 0 0
Az u -y

BY = (C.2)
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Figure C1. A plot of B(l) (w) for Z = 1, n3 = 1, the curves are labelled by the valuenaf.

nn'
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Figure C2. A plot of some vaIuesB':f?, (w) for Z = 1, the curves are labelled by the value of
nn’. The values of the asymptotic formula (C.8) are marked by arrows.

47 1 H P — HGY
B\, = {cg">cg">[ o™?T () +2Z(C +Inw) + ]
w? — 2 p? —
/( 1) (m) 1(—1 (m)
+c(n) ! H Co (11 ) Z/ Hm(n '
NOEERO) ONENO)
— ,C ) U0 y T+ — 0 ( )
%) ) _ _
+ / e[y 5, (2) + VS (1) + 5,(2) 5, (0)] dx}. (C.3)
0
If n3 > 1 we obtain
BY = B =0, (C.4)
47 *©
B="G o / X2 2y O dx. (C.5)
My — MUn

A few values ofB'") are plotted in figure C1.

If n3 =0 andw — oo on using (30) and

no(—1ym+i !2Am
Ly, (¢) = Z( )" (n + ng)!% (C.6)

¢ (n —m)l(m + ngz)!m!
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(Pauling and Wilson, 1935) we find that
lim ¢J” = (2w)Y? (C.7)
note that in (C.7) the minus sign was omitted from the constant term of (C.&).Afn’
from (31), (C.2) and (C.7) we obtain that
27
lim B =

w—00 n/—n.

(C.8)

The values of a few coupling constark$’) as functions of are plotted in figure C2.
The accuracy 1 was reached easily in the components (C.2)—(C.5) except for the two
sums in (C.3) which are different from zero onlynif = 0. This limitation is of secondary

importance since?,i,lf, is one of the constant terms of (42) and it is the third term of (41).

These terms are preceded by non-zero elements which are much largerGat
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