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The diamagnetic Coulomb problem at high field strength.
Asymptotic analysis

S Barcza†
Konkoly Observatory H-1525 Budapest XII Pf 67, Hungary

Received 2 May 1996

Abstract. The paper deals with asymptotic expansions in cylindrical coordinates for the
Schr̈odinger equation of the diamagnetic Coulomb problem with infinite nuclear mass. The
basis functions introduced by Liu and Starace are analysed: analytical asymptotic expansions
are given for the basis functions and eigenvalues belonging to them. Using these, analytical
asymptotic expansions are obtained for the coupling coefficients and solutions of the system of
second-order ordinary differential equations which arise if the wavefunction is expanded in terms
of the Liu–Starace basis functions. The role of the asymptotic expansions is elucidated for the
numerical solution of the non-adiabatic approximation and for finding non-trivial auto-ionizing
states.

1. Introduction

The Schr̈odinger equation of a hydrogen-like ion of nuclear chargeZ and infinite nuclear
mass in the homogeneous magnetic fieldH parallel to the axisz is the simplest problem of
its kind in the enormous manifold of non-separable quantum-mechanical problems. At an
arbitrary value ofH the Hamiltonian cannot be split into small and large terms, consequently
a conventional perturbative approach is not possible, thus the problem is often treated by
variational calculations, as are other non-separable problems of small dimensions, or by
diagonalization technique. These approaches are beyond the scope of the present paper,
we turn to another method using special eigenfunction expansions which have been applied
recently with success in several cases, for references of their simplest forms see Ruderet
al (1994).

The problem takes the form in the cylindrical coordinates%(= cylindrical radius) and
z as follows.[
∂2

∂%2
+ 1

%

∂

∂%
+ ∂2

∂z2
− n2

3

%2
+ 2Z

(%2 + z2)1/2
− ω2%2 + 2E∗

]
ψ = 0

0 6 % 6 ∞ − ∞ 6 z 6 ∞ (1)

wheren3 is the magnetic quantum number,ϕ is the azimuthal angle aroundz, the first
factor of

9(z, %, ϕ) = (2π)−1/2 exp(in3ϕ)ψ(z, %) (2)

was separated from (1), however,ψ(z, %) cannot be factorized in terms of functions ofz
and%. ω = e|H|/(2mc) andE∗ = E−ωn3, E is measured in atomic units (e = 1,m = 1,
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h̄ = 1), ω = 1 if |H| = 4.7 × 105T . Equation (1) was derived by elementary operations,
further analytical details are given by Liu and Starace (1987).

By transformation

ψ(z, %) = %n3 exp(−ω%2/2)X(z, %) (3)

and introducingξ = ω%2 we obtain our standard form of (1):

ξ
∂2X

∂ξ2
+ [n3 + 1 − ξ ]

∂X

∂ξ
+

[
E∗

2ω
− 1

2
(n3 + 1)

]
X + 1

4ω

[
∂2X

∂z2
+ 2Z

(ξ/ω + z2)1/2
X

]
= 0.

(4)

(Beginning from (3)n3 denotes|n3|, we omit the symbol of the absolute value.) The
assumption

X =
∑
n

fn(z)gn(z, %) (5)

(Liu and Starace 1987) and its analytical and numerical consequences will be the subject
of this paper and paper II (Balla and Benkő 1996). From (4) it is evident that 16 ω 6 ∞
is the field-strength domain where (5) will have favourable convergence.

The LaS basis functions are defined by

∂28n

∂%2
+

[
2Z

(%2 + z2)1/2
− (n2

3 − 1
4)%

−2 − ω2%2 + µn(z)

]
8n = 0 (6)

where

8n(z, %) = %n3+1/2e−ω%2/2gn(z, %) (7)

(6) is suitable for numerical analysis while the equivalent form

∂2gn

∂%2
+

[
2n3 + 1

%
− 2ω%

]
∂gn

∂%
+

[
2Z

(%2 + z2)1/2
− 2(n3 + 1)ω + µn(z)

]
gn = 0 (8)

is convenient for an analytic asymptotic treatment.8n(∞, %)%−1/2 is obviously identical
with the nth element of the Landau basis (Ruderet al 1994), therefore, the LaS basis
can be regarded as a generalized Landau basis. By using the basis functionsgn the pole
% = z = 0 of (1) is eliminated because the composite wavefunction is chosen appropriately
in the neighbourhood of the singularity.

If ω > 0 equation (8) has discrete eigenvaluesµn(z) only, its eigenfunctions are
normalized as

(8n,8n′) =
∫ ∞

0
%2n3e−ω%2

gn(z, %)gn′(z, %)% d% = δnn′ (9)

for any z in order to have(
8n,

∂8n

∂z

)
= 0. (10)

The regular behaviour ofψ and its quadratic integrability at the irregular singularity% = ∞
of (1) is secured automatically by using8n(z, %) in the whole interval−∞ 6 z 6 ∞. The
norm is

〈9,9〉 =
∑
n

∫ ∞

−∞
f ∗
n (z)fn(z) dz. (11)
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The coupled system of ordinary differential equations to be solved is obtained by
introducing (5) in (4), using (8), a multiplication by%2n3 exp(−ω%2)gn from left and an
integration over%:

d2fn

dz2
+ [2E∗ − µn(z)+ Ann]fn +

∑′

n′

[
Ann′fn′ + Bnn′

dfn′

dz

]
= 0 n = 0, 1, . . . (12)

where

Ann′(z) =
∫ ∞

0
8n

∂28n′

∂z2
d% =

(
8n,

∂28n′

∂z2

)
(13)

and

Bnn′(z) = 2
∫ ∞

0
8n

∂8n′

∂z
d% (14)

are the elements of the coupling matrices,
∑′ indicates that the elementn′ = n must be

omitted.
To our knowledge the form (12) was proposed by Liu and Starace (1987), and solved

in adiabatic approximation, i.e. in (5) the sum was confined to one term. This restriction
will be dropped and the differences originating from the non-adiabaticity will be indicated.
Equation (8) is interesting in itself since it defines a system of orthogonal functions at a
fixed value ofz, because of the term 2Z/(%2 + z2)1/2 its analytic treatment is possible in
the regions 06 |z| � 1 and |z| � 1 only. In these domains ofz analytical asymptotic
expansions will be given to the basis functionsgn, the matrix elementsAnn′ , Bnn′ (section 2)
and the solutionX as well by which a numerical integration of (12) will be easier and more
transparent if the sum of (5) is extended to more than one element and important analytical
results will be obtained for non-trivial auto-ionizing resonances (section 3). Concerning the
equations which follow from the application of the LaS basis paper II is devoted to their
numerical solution in the non-asymptotic range. The substantiation of (5) and its comparison
with the numerous other possible forms ofX are beyond the scope of the present paper,
we mention here only that eigenvalues and eigenfunctions with a fixed accuracy will be
obtained from (5) by the minimal number of necessary terms.

2. Asymptotic analysis of the basis equation and asymptotic expansions for the
coupling matrix elements

By using the machinery of this section the time-consuming computation ofAnn′ , Bnn′ ,
will be reduced in the asymptotic domains to the evaluation of algebraic expressions or
normalization factors or to the computation of some simple integrals. In addition to the
computational simplifications the asymptotic formulae of the present section allows the
construction of the analytical form of the complete ensemble of the solutions to (12) in its
singular pointsz = 0 andz = ∞.

2.1. The range0 6 z � 1

By introducing the variable

x = (z2 + ρ2)1/2 |z| 6 x 6 ∞ (15)

(8) takes the form

[H0 + z2H ′ + µn(z)]gn(z, x) = 0 (16)
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where

H0 = ∂2

∂x2
+

[
2n3 + 1

x
− 2ωx

]
∂

∂x
+ 2Z

x
− 2ω(n3 + 1) (17)

H ′ = − 1

x2

[
∂2

∂x2
−

(
1

x
+ 2ωx

)
∂

∂x

]
. (18)

Equation (16) will be solved by a perturbation theory to obtain the coefficients of the series

µn(z) = µ(0)n + µ(1)n z
2 + · · · (19)

and

gn(z, x) = χ(0)n (x)+ χ(1)n (x)z2 + χ(2)n (x)z4 + · · · (20)

where

χ(i)n (x) =
∑
m

a(i)nmχ
(0)
m (x) i = 1, 2 (21)

and

[H0 + µ(0)m ]χ(0)m (x) = 0 m = 0, 1, . . . (22)

defines the basis to expandgn. The perturbation theory is peculiar in the sense that the
basis functions depend onz implicitly and for gn the basis functions are exactly orthogonal
at z = 0 only:∫ ∞

|x|
(x2 − z2)n3e−ω(x2−z2)χ(0)n (x)χ

(0)
n′ (x)x dx =

{
1 if n = n′

O(z2n3+2) if n 6= n′.
(23)

By the steps of a conventional perturbation theory we find from the coefficient ofz2

that

µ(1)n = −H ′
nn + O(z2n3+2) (24)

and

a
(1)
nn′ = H ′

n′n

µ
(0)
n′ − µ

(0)
n

+ O(z2n3+2) (25)

if n′ 6= n while a(1)nn is arbitrary, formulae for efficient computation ofH ′
nn′(z) are given in

appendix A. By elaborating the coefficient ofz4 we obtain that

a
(2)
nn′ = 1

µ
(0)
n′ − µ

(0)
n

[ ∑′

m

a
(1)
nn′H

′
n′n + µ(1)n a

(1)
nn′

]
+ O(|z|2n3+2) (26)

if n 6= n′ anda(2)nn is arbitrary. The normalization (9) ofgn is satisfied if

a(1)nn = 0 (27)

a(2)nn = − 1
2

∑
n′
a
(1)2

nn′ . (28)
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2.1.1. The solution of (22) If ω → ∞ (22) takes the form[
ξ̂

d2

dξ̂2
+ (n3 + 1 − ξ̂ )

d

dξ̂
+ Z

2(ωξ̂)1/2
+ µ(0)n

4ω
− n3 + 1

2

]
χ(0)n (ξ̂ ) = 0 (29)

whereξ̂ = ωx2 was introduced. The normalized regular solutions of (29) are

χ(0)n (x) =
[

2ωn3+1n!

(n+ n3)!3
+ O(z2n3+2)

]1/2

L
n3
n+n3

(ξ̂ )+ O(ω−1/2) (30)

if

µ(0)n = 2ω(2n+ n3 + 1)+ O(ω−1/2) n = 0, 1, . . . (31)

note that the factor 2ωn3+1 will harmonize (30) with (9).
If 0 < ω < ∞ then (22) has no solutions in polynomial form except for a number of

discreteµ(0)n andω values (Taut 1995). For an arbitraryω (22) was solved numerically by
the following procedure (Barcza 1979). We assume

χ(0)n (x) =
∑
m

c(n)m x
m+γ (32)

after introducing it in (22) we obtain a recurrence relation forc(n)m :

(γ +m+ 2)(γ +m+ 2 + 2n3)c
(n)

m+2 + 2Zc(n)m+1 − [2(γ +m+ n3 + 1)ω − µ(0)n ]c(n)m = 0

m = −2,−1, . . . , c(n)−2 = c
(n)

−1 = 0 (33)

from which it follows thatγ = 0, c(n)0 is arbitrary and linearly present in anyc(n)m , therefore,
c
(n)

0 is just the normalization factor. By appropriate choice ofc
(n)

0 the upper row of (23)
must be satisfied, itsz dependence will be of the form constant+ O(z2n3+2). Since

lim
m→∞

c
(n)

m+2

c
(n)
m

= 2ω

m
(34)

the expansion (32) is convergent for any finitex and this is fully sufficient for our purpose.
(The asymptotic behaviourχ(0)n ∝ exp(2ωx2) of (32) would make it unacceptable only if it
were extended forx = ∞.)

By using expansion (32) the equation

χ(0)n (xs, µ
(0)
n (xs)) = 0 (35)

was solved numerically for a particularxs and 1.1xs , xs was increased stepwise until
satisfying the condition

|1 − µ(0)n (1.1xs)/µ
(0)
n (xs)| < 10−7. (36)

Figures 1 and 2 are the plots of the computed values of the functionµ(0)n (ω) and of the value
of xs which was necessary to satisfy (36). Using double-precision arithmetic the levels up
to some 15 nodes could be explored by solving (35). To check the quality ofχ(0)n of the
form (32) for the levelsn = 0–5 (23) was computed, ifn 6= n′ and z = 0 the absolute
value of the integral was approximately 10−7 or less in the interval 0.1 < ω < 1000. An
alternative method of solving (22) is given in appendix B.

Figure 1 shows a composite spectrum: atω → 0 for the low-lying levels there is a
Balmer-like behaviour without merging because at any value ofω with increasing node
numbers the spacing of the eigenvalues converges to 4ω, i.e. to the Landau spacing. At
ω → ∞ the Balmer-like behaviour disappears and the Landau spacing dominates.

Three remarks are appropriate.
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Figure 1. A plot of µ(0)n (ω) for Z = 1, n = 0, 1, 2, 3, 4. Solid curves:n3 = 0; broken curves:
n3 = 1.

Figure 2. A plot of xs(ω) for n = 0, 1, 2. Solid curves:n3 = 0; dotted curves:n3 = 1. The
oscillation of the curves is a consequence of the stepwise increasing ofxs in (36) which was
not smoothed out.

(a) The solutionsχ(0)n ∝ x−2n3, which are valid solutions forz > 0 because ofx > 0,
must be excluded from continuity considerations in the pointz = 0.

(b) If ω = 0 (22) admits solutions of the formp(x) exp(. . . x) wherep is a polynomial
which could be used to expandgn in the domain 06 ω � 1. (These are irrelevant for us
and will not be discussed because (5) is an unsuitable assumption here.) The eigenvalues
belonging to them are

µ(0)n = −4Z2

(2n+ 2n3 + 1)2
(37)

the difference of the numerical values from (36) and (37) was about 10−5–10−3 for n = 0, 5
at ω = 0.01.

(c) The solutions of Taut (1995) are obtained from (33) by setting

µ(0)n = 2ω(m+ n3 + 1) (38)

and

c
(n)

m+1 = 0. (39)
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These conditions terminate (32) byc(n)m+2 = 0, they are equivalent to an algebraic equation
for the ‘free’ parameterω of (33), its real roots degenerate (32) into a polynomial of degree
m.

2.1.2.
The final form of the LaS basis functions is

8n(z, %) = %n3+1/2e−ω%2/2

{
χ(0)n (x)+

[ ∑′

m

H ′
mn

µ
(0)
m − µ

(0)
n

χ(0)m +
∑
m

ā(2)nmχ
(0)
m

]
z2 + · · ·

}
(40)

whereā(2)nm is the coefficient ofz−2 in (26) which is zero ifn3 > 1. On introducing it in (13)
and (14)—remembering that∂/∂z requires the inclusion(z/x)∂/∂x etc—by comparing the
two expansions we find forn 6= n′

Bnn′ = B
(0)
nn′ + B

(∗)
nn′z ln |z| + B

(1)
nn′z + O(z2 ln |z|) (41)

and

Ann′ = A
(∗)
nn′ ln |z| + A

(0)
nn′ + O(z ln |z|) = 1

2[B(∗)nn′ ln |z| + B
(1)
nn′ + B

(∗)
nn′ + O(z ln |z|)]. (42)

The diagonal elements of the coupling matrix are obtained by derivation of (10) with respect
to z: if n3 = 0

Ann = −
(
∂8n

∂z
,
∂8n

∂z

)
= A(0)nn + · · · = −

∑′

m

[
H ′(−1)
mn

µ
(0)
m − µ

(0)
n

]2

+ O(z ln |z|) (43)

while Ann = A(2)nn z
2 + · · · if n3 > 1. The value ofA(0)nn is plotted in figure 3, the summation

was extended from 10 to 15 elements in order to have relative accuracy 0.01. Formulae
are given in appendix C for efficient computation of the coefficients of (41) and (42), and
some characteristic values ofB(0)nn′ andB(1)nn′ are plotted.

Figure 3. A plot of A(0)nn (ω) for n = 0: full curve; n = 1: dotted curve;n = 2: broken curve
(Z = 1).

A numerical comparison of the asymptotic expansions (19) and (41)–(43) with the results
of a numerical integration of (6) will be presented in paper II.

2.2. The asymptotics forz � 1

After expansions (8) takes the form

ξ
∂2gn

∂ξ2
+ (n3 + 1 − ξ)

∂gn

∂ξ
+

{
Z

2ω|z|
[

1 − ξ

2ωz2
+ 3ξ2

8ω2z4
+ O(z−6)

]
+ µn(z)

4ω
− n3 + 1

2

}
gn = 0 (44)
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where

µn(z) =
∞∑
m=0

b
(µ)
m

|z|m (45)

and

gn(z, ξ) =
∞∑
k=0

∞∑
m=0

b(k)m

|z|k L
n3
m+n3

(ξ). (46)

Equation (44) was solved by using (8) withz = ∞ (Laguerre differential equation), the
relation

ξL
n3
n+n3

= − n+ 1

n+ n3 + 1
L
n3
n+n3+1 + (2n+ n3 + 1)Ln3

n+n3
− (n+ n3)

2L
n3
n+n3−1 (47)

among the associated Laguerre polynomials, and equating the coefficient of the different
Laguerre polynomials with zero at every power ofz−1. The result is

gn(z, ξ) = b(0)n L
n3
n+n3

(ξ)+
∞∑
k=1

1

|z|2k+1

k∑
m=max(−k,−n)

[
b
(2k+1)
n+m + b

(2k+2)
n+m
|z|

]
L
n3
n+m+n3

(ξ) (48)

here the coefficientsb(k)m of (46) outside the domain indicated by the sum in (48) are zero,
while the coefficientsb(k)n are arbitrary, and

µn(z) = 2ω(2n+ n3 + 1)− Z

|z|
[

2 − 2n+ n3 + 1

ωz2

+ 18n(n+ n3 + 1)+ 3n2
3 + 9n3 + 6

16ω3z4
+ · · ·

]
. (49)

Those coefficientsb(2k+1)
n±m of (48) which are necessary to calculate the first two non-vanishing

terms of the asymptotic expansion of the coupling matrix elementsAnn′ , Bnn′ can be given
explicitly:

b
(2k+1)
n+k = Zb(0)n

2ωk+1kk!

k−1∏
m=0

(m+ 1
2)

k∏
m=1

n+m

n+m+ n3
(50)

b
(2k+1)
n−k = − Zb(0)n

2ωk+1kk!

k−1∏
m=0

(m+ 1
2)

k−1∏
m=0

(n−m+ n3)
2 (51)

note thatn is fixed in (50), (51),k = 1, 2, . . ..
The normalization condition (9) must be satisfied by the appropriate choice of the

arbitrary coefficients:

b(0)n =
[

2ωn3+1n!

(n+ n3)!3

]1/2

(52)

b(3)n = b(4)n = b(5)n = 0 (53)

and

b(6)n = −Z
2[2n2 + (n3 + 1)(2n+ 1)]

32ω4
b(0)n (54)

b(7)n , . . . can similarly be obtained.



The diamagnetic Coulomb problem 6773

If n 6= n′ the first non-vanishing terms of the asymptotic expansions of the coupling
matrix elements are given by(
8n,

∂i8n′

∂zi

)
= (−1)i(n!n′!)1/2|z|−2|1n|−i−1

[(n+ n3)!(n′ + n3)!] 3/2

[
(n+ n3)!3

n!

i∏
j=1

(2|1n| + j)b
(2|1n|+1)
n′−1n

+ 1

|z|
|1n|−1∑
m=1

b
(2m+1)
n±m

i∏
j=1

(2|1n| − 2m+ j)b
(2|1n|−2m+1)
n′−(1n∓m)

(n±m+ n3)!3

(n±m)!
+ · · ·

]
(55)

where1n = n′ −n, the upper sign is valid if1n > 0, i = 1, 2, finally −1n or −(1n∓m)
must be used in (50) and (51) instead ofk for a fixedn or n′. If n = n′

Ann = − 9Z2

16ω4z8
[2n(n+ n3 + 1)+ n3 + 1] + O(|z|−9). (56)

The values of the asymptotic expressions (55) and (56) will be compared with the computed
coupling matrices in paper II. For the asymptotic analysis of (12) it is important to summarize
from this section that all matrix elementsAnn′ , Bnn′ vanish rapidly at|z| → ∞. The only
non-vanishing element is the first term of (49).

3. Asymptotic analysis of the coupled equations

3.1. The domain|z| � 1

By assumption (5) the pointz = 0 in (12) was converted to a regular point ifn3 > 1,
while it is logarithmically singular in the non-adiabatic approximation ifn3 = 0. ψ will be
regular in the interval 06 z � 1 and satisfy (12) if

fn(z) =
∞∑
m=0

d(n)m zγn+m +Dn(z) (57)

is assumed for alln together withγn > 0, where

Dn(z) = D(0)
n z

2(2 ln |z| − 3)/4 +D(1)
n z

3(6 ln |z| − 5)/36+ · · · (58)

will compensate the logarithmic singularity ifn3 = 0: D(0)
n = 0 for the odd solutions,

D(1)
n = 0 for the even solutions, and of courseD(0)

n = D(1)
n = 0 if n3 > 1 or (5) is confined

to a single term. Using (57) the complete ensemble of the bounded asymptotic solutions of
(12) was constructed in the form of expansions which degenerate into Taylor series in the
adiabatic approximation or ifn3 > 1.

After introducing (19), (41)–(43), and (57) in (12) we obtain from the coefficient of
zγn−2 that γn = γ = 0 or γn = γ = 1 (corresponding to the even and odd solutions in
z), the coefficientsd(n)0 are arbitrary and at least one of them must be different from zero.
From the coefficient ofzγ we obtain

d
(n)

2 =
[
(µ(0)n − 2E∗ − A(0)nn )d

(n)

0 −
∑′

n′
A
(0)
nn′(1 + 2γ )d(n

′)
0

]
/[(γ + 1)(γ + 2)]. (59)

If n3 = 0 andγ = 0 (59) givesd(n)2 , A(0)nn must be taken from (43). Checking for parity
shows thatd(n)1 = 0. The coefficient of ln|z| is zero if

D(0)
n = −

∑′

n′
A
(∗)
nn′d

(n′)
0 . (60)
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If n3 = 0 andγ = 1 the elaboration of the powersz0, z ln |z|, z results in

d
(n)

1 = − 1
2

∑′

n′
B
(0)
nn′d

(n′)
0 (61)

D(1)
n = −

∑′

n′
(A

(∗)
nn′ + B

(∗)
nn′)d

(n′)
0 (62)

d
(n)

2 = 1
6

[
(µ(0)n − 2E∗ − A(0)nn )d

(n)

0 −
∑′

n′
(A

(0)
nn′ + B

(1)
nn′)d

(n′)
0 + 2B(0)nn′d

(n′)
1

]
. (63)

Since sign(z) is a factor ofB(0)nn′d
(n)

1 z2 will, while B(0)nn′d
(n′)
1 will not change its sign atz = 0;

consequently this term does not destroy the parity offn with respect toz → −z.
The asymptotic solution (57) is useful to bridge over the critical region 06 |z| � 1

where a numerical integration of (12) is problematic because of the logarithmic singularity
of Ann′ . Furthermore this analysis pointed out that at an outward (i.e. fromz = 0 to
z = ∞) numerical integration of (12) the appropriate vanishing of the vector–vector function
F (E) must be found whereF (z) = (f0(z), f1(z), . . .) and each elementsfn(z) depend on
E = (E∗, d(1)0 /d

(0)
0 , . . .) if d(0)0 is the non-zero element.

3.2. The domain|z| → ∞
At z = ±∞ equations (12) have an irregular singularity: a series expansion of the type
(57) e.g. in terms of the variablet = |z|−1 does not exist. It is, however, possible through
analytical reasoning to determine the ‘tail’ of the wavefunction (Bethe and Salpeter 1957)
by finding the form offn(z) for all indicesn, to derive the thresholds inE∗(ω) which
divide the bound and continuum states, and to show those solutions which correspond to
auto-ionizing states.

If (49), (55) and (56) are introduced in (12) and the vanishing terms at|z| → ∞ are
neglected in adiabatic approximation the asymptotically good solutions are of the form

fn = vn(z) exp{−[2ω(2n+ n3 + 1)− 2E∗]1/2|z|}. (64)

The ionization thresholds are different for every channeln:

E∗
n = [µn(∞)− Ann(∞)]/2 = ω(2n+ n3 + 1). (65)

In non-adiabatic approximationAnn′ , Bnn′ mix solutions of type (64), therefore

fn(z) =
∑
m

vnm(z) exp{−[2ω(2m+ n3 + 1)− 2E∗]1/2|z|} (66)

must be assumed. Using the variablet it can be pointed out thatvn(z) 6= 0 andvnn(z) 6= 0
at |z| → ∞, i.e. their behaviour does not change the unbounded character of (11) if the
exponents of (64) and (66) are imaginary, the further properties ofv are irrelevant for the
asymptotic considerations. Consequently it is evident that in (12) the only threshold is at

E∗
0 = ω(n3 + 1) (67)

which is equivalent to two thresholds atE = ω andE = (2n3 + 1)ω if n3 6= 0. The trivial
auto-ionizing states are obtained ifn3 > 0 andE(ω) = E∗(ω) + ωn3 > ω occurs when
increasingω. If

(2n0 + n3 + 1)ω < E∗ < (2n0 + n3 + 3) n0 = 0, 1, . . . (68)

fn(z) has oscillating componentsn0+1 and the norm (11) will be unbounded. Furthermore,
experience from numerical integration of (1) in spherical coordinates (Barcza 1994) has
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shown that with increasingω then = 0 term dominates the norm (11). Therefore, all levels
are of continuum type with oscillating wavefunction ifE∗ > E∗

0.
Nevertheless, from qualitative physical considerations it is expected, and in adiabatic

approximation it was found (Venturaet al 1992, Ruderet al 1994), that by thez motion a
Balmer-like merging is caused to any Landau level. These results apply strictly forω = ∞.
For the domain 16 ω < ∞ our asymptotic analysis revealed that these levels can be found
in non-adiabatic approximation by eliminating the oscillating termf0(z)g0(z, %) from X if
n0 = 0, f0(z)g0(z, %) andf1(z)g1(z, %) if n0 = 1 etc.

A simple omission of the elementn = 0 from (5) is a first approximation to find these
levels but it raises the question of the relation of this solution of (12) to that of (1). A
mathematically appropriate way of eliminatingf0g0 is to impose the condition

∞∑
n′=1

A0n′fn′ + B0n′
dfn′

dz
= 0 (69)

by which f0 is completely decoupled from (12) and satisfies the homogeneous eigenvalue
equation

d2f0

dz2
+ [2E∗ − µ0(z)+ A00]f0 = 0. (70)

Its solution is of the form

f0 = C0v0(z) exp{−[2ω(n3 + 1)− 2E∗]1/2|z|} (71)

C0 is arbitrary. If C0 6= 0 in the bound domainE∗ < E∗
0 the eigenvalues are already

determined by (70) which is essentially an adiabatic approximation with discrete spectrum.
However, these are not eigenvalues of the rest of the coupled equations ((12) withn > 1
and (69)), therefore the choiceC0 = 0 is necessary to convert (70) to identity at anyE∗.
In the continuum domainE∗ > E∗

0 (70) has a continuous spectrum, the choiceC0 6= 0 is
possible by which a continuum-wavefunction is obtained if (12) withn > 1 and (69) are
integrated numerically. From asymptotic analysis a criterion has not been found whether
solutions of this type exist with discrete or continuous multitude ofC0. These solutions,
if they exist for the whole axisz, constitute a subspace of the continuum of (1) which is
rather a mathematical peculiarity and its eventual physical significance cannot be clarified
merely from asymptotic analysis.

If C0 → 0 equations (12) withn > 1 and (69) degenerate into an eigenvalue problem
for the non-trivial auto-ionizing resonance levels ofn0 = 0 with bounded norm (11) at the
eigenvalues, the threshold is now atE∗

1 = ω(n3 + 3). This system of coupled differential
equations can be solved by appropriate numerical methods; when looking for the best form
of (69) to introduce it in (12) the asymptotic analysis of section 2 must be extensively
used to avoid, e.g. an incorporation of unnecessary singularities which can be formed by a
careless combination of singular or rapidly vanishing elements.

After having expressedf1(z) from (69) and introduced it in (12) we can find the non-
trivial auto-ionizing resonance levels ofn0 = 1 if the auxiliary condition
∞∑
n′=2

{[
A1n′ − (2E∗ − µ1 + A11)

A0n′

A01

]
fn′ +

[
B1n′ − (2E∗ − µ1 + A11)

B0n′

A01

]
f ′
n′

}
= 0

(72)

is imposed on (12) withn > 1 and (69). In principle the imposition of auxiliary conditions
can be continued to find the non-trivial auto-ionizing levels belonging to any higher Landau
level. If eigenvalues satisfyingE∗ > E∗

0 are found from the numerical integration of (12)
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and auxiliary condition(s) as expected whenω > 1 these are the non-trivial auto-ionizing
states.

Because of (68) the thresholds follow each other by the Landau spacing. The position
of the thresholds, the domains of the non-trivial auto-ionizing levels are an intrinsic feature
of (1): if the expansions in terms of the Landau basis (Ruderet al 1994) or oblate angular
spheroidal functions (Barcza 1994) are analysed the same results are obtained as in the
present subsection. This feature is not apparent only if unsuitable basis functions are used
to expandψ .

4. Conclusions

The asymptotic analysis reported in this paper provides the basic first steps, a foundation for
specifying efficient numerical integration methods for the solution of the system of coupled
second-order ordinary differential equations (12) which arises from the choice of the LaS
basis. The preliminary numerical tests indicate that the efficiency of the numerical methods
is drastically improved by the incorporation of the established asymptotics especially at
z � 1 where the time-consuming computation ofµn(z) and coupling matrices can be
avoided.

By the construction of asymptotic expansions forfn(z) at 06 z � 1 much computing
time can be saved in a numerical integration of (12) ifn3 = 0 since the error of an integrator
formula does not vanish when increasing its order. The values offn(z ≈ 0) became known
by solving linear algebraic equations which makes a number of trial shootings unnecessary,
and the asymptotically free parametersd(n)0 of the wavefunction were found. The asymptotic
analysis of (12) atz → ∞ revealed the asymptotic form of the wavefunction, the thresholds
and gave hints on how to find the non-trivial auto-ionizing states by the numerical integration
of (12).

As a result of the asymptotic analysis the−∞ 6 z 6 ∞ interval of a numerical
integration could be confined to a finite interval [0, z] but a more important result is that
we have found analytical criteria which lead to non-trivial auto-ionizing resonance levels.

Appendix A. The matrix elements for the perturbation series (20) and (21)

H ′
n′n(z) =

∫ ∞

|z|
(x2 − z2)n3e−ω(x2−z2)χ

(0)
n′ H

′χ(0)n x dx

=
∫ ∞

|z|
(x2 − z2)n3e−ω(x2−z2)χ

(0)
n′

1

x

{
2(n3 + 1)

x

∂χ(0)n

∂x

+
[

2Z

x
− 2ω(n3 + 1)+ µ(0)n

]
χ(0)n

}
dx

= H
′(−1)
n′n |z|−1 −H

′(∗)
n′n ln |z| +H

′(0)
n′n + O(|z|). (A.1)

If n3 = 0

H
′(−1)
nn′ = −2Zc(n)0 c

(n′)
0 (A.2)

H
′(∗)
nn′ = 4Z2c

(n)

0 c
(n′)
0 (A.3)

H
′(0)
nn′ = 2Zc(n)0 c

(n′)
0 [ω1/20( 1

2)− Z(C − lnω)]

+
∫ ∞

0
e−ωx2

[c(n)0 Ŝn′(3)+ c
(n)

1 Ŝn′(2)+ S̄n(2)Ŝn′(1)] dx (A.4)
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whereC is the Euler number,

Ŝn′(m′) = 2(n3 + 1)
∞∑

m=m′
mc(n

′)
m xm−m′

+2Z
∞∑

m=m′−1

c(n
′)

m xm−m′+1 + [µn′ − 2ω(n3 + 1)]
∞∑

m=m′−2

c(n
′)

m xm−m′+2 (A.5)

S̄n(m
′) =

∞∑
m=m′

c(n)m x
m−m′

. (A.6)

To obtain the value of (A.2) and (A.3) the relation

c
(n)

0 = lim
%→0

8n(0, %)/%
−1/2 (A.7)

is useful if8n is determined by a numerical integration of (6).
If n3 > 1

H
′(−1)
nn′ = H

′(∗)
nn′ = 0 (A.8)

H
′(0)
nn′ =

∫ ∞

0
x2n3−2e−ωx2

S̄n(0)Ŝn′(1) dx. (A.9)

It is a remarkable feature of the asymptotic expansions (19)–(20) that ifn3 = 0 by
(A.1) the vanishing of the first- and second-order terms in the perturbation series (19) and
(20) are proportional to|z| and z2 respectively while the vanishing∝ z2, z4 is unchanged
if n3 > 1. This difference follows from the nature of the singularity of 2Z/% − n2

3/%
2 at

% = 0: the first term dominates ifn3 = 0 while the second one is dominating ifn3 > 1.

Appendix B. An alternative expansion to (22)

The numerical results of section 2.1.1 forµ(0)n will be confirmed here by an expansion which
is interesting from an analytical point of view although it is computationally less efficient.
We substitute

8n(0, %) = %n3+1/2eω%
2/2χ̃ (0)n (%) (B.1)

for (7) in (6). The analogue of (22) reads in this case{
d2

dx2
+

[
2n3 + 1

x
+ 2ωx

]
d

dx
+

[
2Z

x
+ 2ω(n3 + 1)+ µ(0)n

]}
χ̃ (0)n = 0 (B.2)

its solution is assumed in the form

χ̃ (0)n =
∑
m

c̃(n)m x
m+γ . (B.3)

The recurrence relation for̃c(n)m is

(γ +m+ 2)(γ +m+ 2 + 2n3)c̃
(n)

m+2 + 2Zc̃(n)m+1 + [2(γ +m+ n3 + 1)ω + µ(0)n ]c̃(n)m = 0

m = −2,−1, . . . c̃
(n)

−2 = c̃
(n)

−1 = 0 (B.4)

from which it follows thatγ = 0, and

lim
m→∞

c̃
(n)

m+2

c̃
(n)

m+1

= ±i

(
2ω

m

)1/2

lim
m→∞

c̃
(n)

m+2

c̃
(n)
m

= −2ω

m
(B.5)
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Figure B1. A plot of someφ(x, n, n3) = xn3 exp(ωx2/2)χ̃ (0)n for Z = 1, ω = 10. Full
curves: n = 0, µ(0)0 = 7.185 762 forn3 = 0, µ(0)0 = 34.25 883 for n3 = 1. The dotted
and broken curves in the left panel show the start of the divergent behaviour ofφ(x, 0, 0) if
µ
(0)
0 = 7.183(< 7.185 762) andµ(0)0 = 7.188(> 7.185 762) were used in (B.3). Dotted curves

in the middle and right panel:µ(0)1 = 51.28 293 forn3 = 0, µ(0)1 = 75.02 968 forn3 = 1.

Broken curves:µ(0)2 = 92.68 091 forn3 = 0, µ(0)2 = 115.4932 forn3 = 1. These values ofµ(0)n
satisfy (B.7). The noisy end ofφ(x, 2, 0), φ(x, 2, 1) indicates the valuex where computational
accuracy 10−15 becomes insufficient for computing̃χ(0)2 (x) accurately enough. The noise at
x ≈ 1.5 is replaced by a vanishing behaviour corresponding to (B.7) if the computational
accuracy is increased to some 10−18, however, it reappears at larger values ofx.

i.e.

χ̃ (0)n ∝ e−2ωx2
(B.6)

if m � 1. The asymptotic behaviour (B.6) implies a quadratically integrable vanishing of
(B.1) which corresponds to a bound state, the only prescription is for (B.3) that the series
must not be terminated. A few functionsφ(x, n, n3) = 8n(0, x)x−1/2 = xn3 exp(ωx2/2)χ̃ (0)n
are plotted in figure B1. The eigenvalue was obtained from the condition

lim
x→∞φ(x, n, n3;µ(0)n ) = 0 (B.7)

which is satisfied at discrete values ofµ(0)n only. Full agreement was found with the
numerical results originating from (35) and (36): our sophisticated method did not reveal
new levels. The decreased efficiency of this procedure manifests itself in the loss of digits
when computing (B.3) with increasingx where its convergence is similar to that of the
Taylor expansion of exp(−2ωx2) at x � 1.

Solutions of type (B.1) were rejected in the early days of quantum mechanics (see e.g.
Pauling and Wilson 1935 or any later textbook on the topic), from this remark it is obvious
that this is not justified since the exponential divergence in (B.1) is compensated by the
behaviour (B.6) ofχ̃ .

Appendix C. The coefficients to the expansion of the matrix elementsAnn′ , Bnn′ at
z ≈ 0

The coefficients for (41) and (42) were computed by expanding the relation

1

2
Bnn′ =

(
8n,

∂8n′

∂z

)
= 1

µn′(z)− µn(z)

∫ ∞

|z|
8n8n′

2Zz

x3
dx (C.1)

(Barcza 1994). Ifn3 = 0 the results are

B
(0)
nn′ = B

(∗)
nn′

4Z
= 4Zc(n)0 c

(n′)
0

µ
(0)
n′ − µ

(0)
n

(C.2)
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Figure C1. A plot of B(1)
nn′ (ω) for Z = 1, n3 = 1, the curves are labelled by the value ofnn′.

Figure C2. A plot of some valuesB(0)
nn′ (ω) for Z = 1, the curves are labelled by the value of

nn′. The values of the asymptotic formula (C.8) are marked by arrows.

B
(1)
nn′ = 4Z

µ
(0)
n′ − µ

(0)
n

{
c
(n)

0 c
(n′)
0

[
− ω1/20

(
1

2

)
+ 2Z(C + lnω)+ H

′(−1)
n′n′ −H ′(−1)

nn

µ
(0)
n′ − µ

(0)
n

]

+c(n)0

∑′

m

H
′(−1)
mn′ c

(m)

0

µ
(0)
m − µ

(0)
n′

+ c
(n′)
0

∑′

m

H ′(−1)
mn c

(m)

0

µ
(0)
m − µ

(0)
n

+
∫ ∞

0
e−ωx2

[c(n)0 S̄n′(2)+ c
(n)

1 S̄n′(1)+ S̄n(2)S̄n′(0)] dx

}
. (C.3)

If n3 > 1 we obtain

B
(0)
nn′ = B

(∗)
nn′ = 0, (C.4)

B
(1)
nn′ = 4Z

µ
(0)
n′ − µ

(0)
n

∫ ∞

0
x2n3−2e−ωx2

χ(0)n χ
(0)
n′ dx. (C.5)

A few values ofB(1)nn′ are plotted in figure C1.
If n3 = 0 andω → ∞ on using (30) and

L
n3
n+n3

(ξ̂ ) =
n∑

m=0

(−1)m+1(n+ n3)!2ξ̂m

(n−m)!(m+ n3)!m!
(C.6)
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(Pauling and Wilson, 1935) we find that

lim
ω→∞ c

(n)

0 = (2ω)1/2 (C.7)

note that in (C.7) the minus sign was omitted from the constant term of (C.6). Ifn 6= n′

from (31), (C.2) and (C.7) we obtain that

lim
ω→∞B

(0)
nn′ = 2Z

n′ − n
. (C.8)

The values of a few coupling constantsB(0)nn′ as functions ofω are plotted in figure C2.
The accuracy 10−6 was reached easily in the components (C.2)–(C.5) except for the two

sums in (C.3) which are different from zero only ifn3 = 0. This limitation is of secondary
importance sinceB(1)nn′ is one of the constant terms of (42) and it is the third term of (41).
These terms are preceded by non-zero elements which are much larger atz ≈ 0.
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